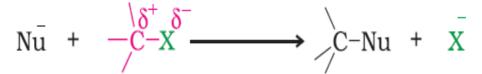
CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT BASED NOTES OF CHAPTER - 10) GANESH KUMAR DATE: 12/09/2020

Haloalkanes and Haloarenes


Chemical Reaction of Haloalkanes

Nucleophilic Substitution Reactions:

These are reactions in which a weak nucleophile is replaced by

a strong nucleophile [Nucleophiles are electron rich species attacks at

electron deficient centre]. In general these reactions can be represented by:

The important Nucleophilic substitution reactions of haloalkanes are:

1. Reaction with aqueous alkali:

Haloalkanes react with aq. NaOH or KOH to form *alcohols*. $R-X + KOH(aq) \longrightarrow R-OH + KX$ Haloalkane Alcohol

e.g.: CH_3 - CH_2 -Br + KOH (aq) \longrightarrow CH_3 - CH_2 -OH + KBr Ethanol **Bromoethane**

2. Reaction with water: Haloalkanes react with water to form alcohols.

R-X + H₂O _____ R-OH + HX Haloalkane Alcohol

3. Reaction with Sodium alkoxide [Williamson's ether synthesis]:

Haloalkanes react with sodium alkoxide to give ethers (R-O-R).

R-X + R-ONa _____ R-O-R + KX

Haloalkane Sodium alkoxide Ethers

e.g.: CH₃-Br + CH₃-CH₂-ONa → CH₃-O-CH₂-CH₃ + NaBr

Bromomethane Sodium alkoxide Methoxy ethane

4. Reaction with Sodium iodide (Nal) [Finkelstein Reaction]:

Alkyl halides (Chlorides or Bromides) react with sodium iodide to form alkyl iodides.

Nal — R-I + NaX R-X +

Alkyl halide

Alkyl iodide

[X = CI or Br]

5. Reaction with ammonia [Hoffmann's reaction]:

Alkyl halides react with alcoholic ammonia to give a mixture

of 1° , 2° and 3° amines and quaternary ammonium salt.

 $R-X + NH_3 \longrightarrow R-NH_2 + R_2NH + R_3N + R_4N^+X^-$

Secondary Tertiary Ammonium Ammonia Primary halide

amine amine salt amine

If ammonia is in excess, only primary amine is formed.

6. Reaction with KCN:

Alkyl

Alkyl halides react with alcoholic KCN to give alkane nitriles or alkyl cyanides.

KCN → R-CN R-X KX + + Alkyl halide Alkyl cyanides

7. Reaction with Silver cyanide (AgCN):

Alkyl halides react with AgCN to give alkyl isocyanides or carbyl amines(R-NC).

AgCN → R-NC + AgX R-X + Alkyl halide Carbyl amine

CN⁻ is an *ambident nucleophile*. i.e.

here both C and N contain lone pair of electrons and can bind to the carbon atom of the alkyl group either through C or through N. Another e.g. is NO₂⁻

Reaction with KCN gives alkyl cyanides. This is because KCN is mainly ionic and gives CN⁻ ions in solution. So both C and N are free to donate electron pairs. But C – C bond is stronger than C – N bond. So cyanides are formed as the major product. But AgCN is mainly covalent and only N is free to donate an electron pair. So isocyanides are the main product.

8. Reaction with Potassium nitrite (KNO₂):

Alkyl halides react with KNO₂ to give alkane nitrite (R-ONO).

 $KNO_2 \longrightarrow R-ONO +$ R-X KX +

Alkyl halide Alkane nitrite

9. Reaction with Silver nitrite (AgNO₂):

Alkyl halides react with AgNO₂ to give *nitroalkane* (R-NO₂)

 $R-X + AgNO_2 \longrightarrow R-NO_2 + AgX$

Alkyl halide

Nitroalkane

10. Reaction with Silver salt of carboxylic acid (Hunsdiecker rk^{n}):

Alkyl halides react with Silver salt of carboxylic acid (R-COOAg) to give *esters* (R-COOR).

R-X + R-COOAg _____ R-COOR + AgX Alkyl Silver Esters halide carboxylate

11. Reduction: Alkyl halides when reduced with lithium aluminium hydride

(LiAlH₄) to give alkane. (LiAlH₄ is a reducing agent)

 $\begin{array}{cccc} R-X &+ & [H] & \xrightarrow{\text{LiAIH4}} & R-H &+ & HX \\ Alkyl halide & & Alkane \end{array}$
